Spatio-temporal covariance modelling of CO concentrations in Madrid
نویسندگان
چکیده
We present a space-time analysis of CO levels in Madrid (Spain). Several covariances ranging from separable to nonseparable structures are fitted using weighted composite likelihood methods. Prediction and goodness-of-fit are evaluated through RMSE.
منابع مشابه
A New Class of Spatial Covariance Functions Generated by Higher-order Kernels
Covariance functions and variograms play a fundamental role in exploratory analysis and statistical modelling of spatial and spatio-temporal datasets. In this paper, we construct a new class of spatial covariance functions using the Fourier transform of some higher-order kernels. Moreover, we extend this class of spatial covariance functions to the spatio-temporal setting using the idea used in...
متن کاملEvaluation of Tests for Separability and Symmetry of Spatio-temporal Covariance Function
In recent years, some investigations have been carried out to examine the assumptions like stationarity, symmetry and separability of spatio-temporal covariance function which would considerably simplify fitting a valid covariance model to the data by parametric and nonparametric methods. In this article, assuming a Gaussian random field, we consider the likelihood ratio separability test, a va...
متن کاملModelling of spatio-temporal zero truncated patterns in infectious disease surveillance data
This paper is motivated by spatio-temporal pattern in the occurrence of Leishmaniasis in Afghanistan and the relatively high number of zero counts. We hold the view that correlations that arise from spatial and temporal sources are inherently distinct. Our method decouples these two sources of correlations, there are at least two advantages in taking this approach. First, it circumvents the nee...
متن کاملModeling of the Relationships Between Spatio-Temporal Changes of Traffic Volume and Particulate Matter-2.5 Pollutant Concentration Based on Geographically Weighted Regression (GWR) and Inverse Distance Weighting (IDW) Model: A Case Study in Tehran M
Background and Aim: High concentrations of particulate matter-25 (PM2.5) have been the cause of the unhealthiest days in Tehran, Iran in recent years. This study was conducted with the aim of the spatio-temporal analysis of traffic volume and its relationship with PM2.5 pollutant concentrations in Tehran metropolis, Tehran during 2015-2018, using the Geographic Information System (GIS). Materi...
متن کاملSpatio-temporal agent based simulation of COVID-19 disease and investigating the effect of vaccination (case study: Urmia)
Proper management of epidemic diseases such as Covid-19 is very important because of its effects on the economy, culture and society of nations. By applying various control strategies such as closing schools, restricting night traffic and mass vaccination program, the spread of this disease has been somewhat controlled but not completely stopped. The main goal of this research is to provide a f...
متن کامل